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A numerical method for solving three-dimensional, time-dependent
incompressible Navier-Stokes equations in curvilinear coordinates is
presented. The non-staggered-grid method originally developed by
C. M. Rhieand W. L. Chow {A/AA J. 21, 1525 (1983)} for steady state
problems is extended to compute unsteady flows. In the computational
space, the Cartesian velocity components and the pressure are defined
at the center of a contro! volume, while the volume fluxes are defined
at the mid-point on their corresponding cell faces. The momentum
equations are integrated semi-implicitly by the appraximate factoriza-
tion technigue. The intermediate velocities are interpolated onto the
faces of the control volume to form the source terms of the pressure
Paisson equation, which is solved iteratively with a multigrid method.
The compatibility condition of the pressure Poisson equation is
satisfied in the same manner as in a staggered-grid method: mass
conservation cah be satisfied to machine accuracy. The pressure
boundary condition is derived from the momentum equations. Salu-
tions of both steady and unsteady problems including the large eddy
simulation of a rotating and stratified upwelling flow in an irregular
container established the favorable accuracy and efficiency of the
present method.  © 1994 Academic Press, Inc.

1. INTRODUCTION

Solution methods for the incompressible Navier—Stokes
equations have been successfully developed in Cartesian
coordinate systems in the past (e.g.,, [ 1, 21). In recent years,
more cffort has been put into developing selution methods
in curvilinear coordinates. Rogers ¢t al. [3] solved both
steady-state and time-dependent problems using an
artificial compressibility method originaily proposed by
Chorin [4]. The advantage of introducing an artificial
compressibility into the continuity cquation is that cfficient
solution algorithms developed for compressible flows can be
utilized to compute incompressible flows. A disadvantage of
the method is that the system of equations may become
highly stiff in a time-dependent situation [ 5] for which an
implicit method may have to be employed. The use of an
implicit method in Rogers et al. requires a large amount of
memory usage (180 variables stored per grid point [3]),
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which poses a severe limitation in three-dimensional com-
putations. The artificial compressibility method, following
solution techniques in compressible flows, naturaily adopts
the Cartesian velocities as the primary dependent variables,
together with the traditional non-staggered grid in which all
the flow variables are defined at the cell center.

Another popular method js the fractional step or the pro-
jection method [1, 6, 7]. This method splits the numerical
operators and achicves pressure—velocity coupling through
solving a Poisson-like elliptic equation for pressure (i.c.,
the pressure Poisson equation). Unlike the artificial
compressibility method, the fractional step method may be
coupled with different choices of dependent variables and
grid layouts, For example, Cartesian, contravariant, or
covariant velocity components may be employed as the
dependent variables. In addition, either a staggered grid [8]
or a non-staggered grid may be used. A sketch of the defini-
tion of various grid layouts in two dimensions is shown in
Fig. 1.

Cartesian velocity components coupled with a staggered
grid have been employed by scveral researchers [9-11]
{Fig. 1a). In three-dimensional problems, all three
Cartesian velocity components are defined on each control
volume face resuiting in the definition of nine velocities and
the solution of nine momentum equations per control
volume. Moreover, a special interpolation scheme needs to
be used to prevent the decoupling of the covariant velocity
components from the pressure field [9]. This method was
employed by the present authors in [11] but was
abandoned later due to its inefficiency. Partly to avoid the
above problems, a different staggered-grid setup was
developed [12,13] which defines only one Cartesian
velocity component on cach control-volume face (Fig. 1b).
This method only requires the solution of three momentum
equations per control volume; however, its accuracy is not
independent of the grid orientation [14]. In Fig. 1b, we see
that when the grid turns by 90°, the Cartesian velocity
defined on a cell face becomes parallel to the face. As a
result, the volume Nuxes through the faces of the cell have to
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FIG. L. Effects of cell orentation on variables in various grid
layouts in curvilinear coordinates: {a) staggered grid with all the Cartesian
velocity components defined on each cell face; (b) staggered grid with only
one Cartesian velocity component defined on each cell face; (c) staggered
grid with the volume flux defined on its corresponding cell face; (d) tradi-
tional non-staggered grid; (¢) new non-staggered grid. Notations are x, y:
Cartesian coordinates; &, #: curvilinear coordinates; w, v: Cartesian
velocity components; U, V: volume fluxes; p: pressure.

be interpolated, an undesirable fact which tends to diminish
the advantage of a staggered grid. To avoid a negative
impact on the solution accuracy, special care needs to be
taken [13]. Rosenfeld eral. [15] employed the volume
fluxes (the contravariant velocity multiplied by the cell
volume) defined on cell faces as primary variables and dis-
cretized the governing equations on a staggered grid using
the finite volume method (Fig. 1¢). This approach mimics
the standard staggered-grid method in Cartesian coor-
dinates in which the compatibility condition of the pressure
Poisson equation is satisfied automatically. The discretiza-
tion, however, is quite complicated and the effort to solve
three momentum equations for the volume fluxes is equiv-
alent to solving nine momentum equations for the Cartesian
velocity components. Moreover, in order to avoid storing
too many geometric quantities which arise from the
formulation, approximations have to be made to find these
quantities at different locations in a control volume. In
another development, Karki and Patankar [16] presented
a method using a staggered grid and the covariant velocity
components as primary variables.

The use of Cartesian velocity components as the primary
dependent variables has the advantage that the governing
equations remain in a relatively simple form and can be put
into strong-conservation-law form. On the other hand, the

use of covariant or contravariant velocity components (or
volume fluxes) results in extra source terms and more
complicated equations [13].

In a stagpgered grid, the cells that enclose the pressure
node and the velocity nodes are different. As a resuit, in
three-dimensional curvilinear coordinates, a staggered-grid
method may require storage of as many as seven sets of
metrics per cell, i.e., metrics defined at the center, the mid-
point of the three cell faces, and the mid-point of the three
edges [10, 121, although a more effective arrangement in a
control volume approach may reduce this number to about
half as many. In transforming the Navier—Stokes equation
into a non-orthogonal coordinate system, we usually have a
set of 16 metrics in a finite volume formulation which
includes nine components of the three vector surface areas,
one volume or the inverse of the Jacobian, and six nontrivial
¢lements of the symmetric mesh skewness tensor. The result
is that a staggered-grid method in curvilinear coordinates
may require a large amount of computer memory to store
the metrics. Simple averaging of metrics defined at cell
centers onto ceil faces and edges is generally considered to
result in a loss of accuracy. This has been experienced by the
present authors. Although Rosenfeld er @l [15] indicated
that their averaging of geometric quantities satisfies the
geometric conservation law, approximations had to be used
in the evaluation of certain geometric terms which may have
negative effects on accuracy.

In order to avoid the above difficulties, researchers
in recent years have investigated methods based on non-
staggered grids [17-23]. Consistent differencing schemes
for the pressure Poisson equation and its boundary condi-
tions have been derived for both Cartesian and curvilinear
coordinates to satisfy the compatibility condition on a
non-staggered grid [17, 18]. Another approach, originaily
proposed by Rhie and Chow [19] and subsequently
modified by Peri¢ ef al. [20] and Majumdar [21], is to
employ special interpolations to obtain a compact stencil
for the pressure gradient on a non-staggered grid to avoid
pressure-velocity decoupling. Only three instead of nine
momentum equations need to be solved. Most studies using
this approach have coupled it with the SIMPLE algorithm
[2] and solved steady-state problems. This so-called
“colocated-grid method” {20] or “momentum interpola-
tion method” [21] has demonstrated good stability and
accuracy in solving steady-state problems.

Solution methods for the incompressible Navier—Stokes
equations based on a non-staggered grid have long had the
reputation of producing spurious osciilations in the pressure
field, ie., the “checkerboard” pattern [2]. One of the
fundamental causes is that, in a traditional non-staggered
grid (Fig. 1d), all the variables are defined at the cell center,
and as a consequence, a straightforward discretization of
the continuity equation does not enforce mass conservation
in the cell and causes decoupling of the pressure field. The
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non-staggered-grid method of Rhie and Chow prevents the
decoupling by defining the voiume flux on its corresponding
face of the cell in addition to the Cartesian velocity com-
ponents at the cell center (Fig. le). In this way, both the
momentum and the continuity equations are enforced in the
same control volume. Analysis has been carried out to com-
parc the elliptic property of several non-staggered-grid
methods [23]. Results show that Rhie and Chow’s method
is strongly elliptic in the sense that all realizable modes in
the wavenumber space on a given grid can be uniquely
determined. This uniqueness prevents energy from
accumulating at the grid scale and, thus, guarantees that
solutions are free from spurious pressure oscillations.
Because of the non-staggered-grid layout, the accuracy of
this method is not affected by grid corientations, and so it is
directly applicable to curved domains with, for example, 90°
turns.

Based on insights from the above, we have extended
the non-staggered-grid method which was developed for
steady flows to solve the time-dependent incompressible
Navier—Stokes equations in curvilinear coordinates. One
major purpose is to employ recognized techniques such as
the fractional step procedure, approximate factorization,
QUICK, high-order interpolation, and multigrid to build
an overall efficient and accurate solution method. A
straightforward formulation is presented which naturally
couples the fractional step method with the non-staggered
grid without special treatment. The compatibility condition
for the pressure Poisson equation is satisfied automatically,
which makes it possible to enforce mass conservation to
machine accuracy.

Most published resuits which employ the Rhie and Chow
non-staggered-grid involve steady flows at low Reynolds
numbers (Re~ 10-1000). Another purpose of the present
work, therefore, is to provide a detailed examination and to
validate the accuracy and efficiency of this method as it is
applied to both steady and unsteady flows. This is achieved
by comparing the present results for several benchmark
tests to those obtained using well-established staggered-grid
methods.

Finally, we present results of the large eddy simulation of
a turbulent rotating and stratified flow in an irregular con-
tainer which resembles the coastal upwelling phenomenon.
This case represents a challenge in testing the capability of
the present method in treating unsteady and both physically
and geometrically complex flows.

The governing equations and the coordinate transforma-
tion are presented in Section 2. The numerical method is
described in Section 3. In Section 4, results from five test
cases are presented. The test cases include one with an
exact solution, two in Cartesian coordinates, and two in
curvilinear coordinates. The large eddy simulation results of
the upwelling flow is presented in Section 5. A summary is
given in Section 6.

2. GOVERNING EQUATIONS

We present the governing Navier-Stokes and continuity
equations in the constant viscosity and constant density
form,

o,

Fiso 1
" (1)
du;, 0 op &%u;
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ot +6xj (a545) 6x,~+vé‘xj ax;’ (2)

where i, j=1, 2, 3; i, represents the Cartesian velocity com-
ponents; p is the pressure divided by fluid density; v is
the kinematic viscosity. The present numerical method is
directly applicable to incompressible, variable density
and/or rotating fluid (sec Section5 and Ref [24])
Equations (1) and (2} are transformed into curvilinear
coordinates in strong-conservation-law form as
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where the flux is
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J ~1is the inverse of the Jacobian or the volume of the cell;
U/, is the volume flux {contravariant velocity multiplied by
J 7 ') normal to the surface of constant £, ; and G™ is called
the “mesh skewness tensor.” These quantities are

a¢
=J- ' =22,
v,=J iju” (6)
ax;
J"‘=dt(—') 7
(52 )
_, 08¢, 8¢
mn o __ 1 m n
= dx; dx; (8)

3. NUMERICAL METHOD

3.1. Discretization

We cmploy the nomstaggered-grid layout shown in
Fig. le. The pressure and the Cartesian velocity components
are defined at the center and the volume fluxes are defined
at the mid-point of their corresponding faces of the control
volume in the computational space (Fig. 2). Following Kim
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mapping P
g
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F1G. 2. A control volume of the non-staggered grid and the mapping
in two dimensions.

and Moin [1], we use a semi-implicit time-advancement
scheme with the Adams-Bashforth method for the explicit
terms and the Crank—Nicolson for the implicit terms. The
discretized equations are

Un _, ()

&,
J—IU_E(CH'FD ( n))_i Cn—l+D n—1 )
P, =% FALS 2( ‘ elui ™)

+R,~(P"“)+% (D (uf* +uf)), (10}

where 4/3¢, represents discrete finite difference operators in
the computational space; superscripts represent the time
step; C; represents the convective terms; R, is the discrete
operator for the pressure gradient terms; and Dz and D, are
discrete operators representing, respectively, the explicitly
treated off-diagonal viscous terms and the implicitly treated
diagonal viscous terms. They are

C.= —gg—m(U,ﬂu,v {an
R (5 12
b (6msg) om0
DE=3§—M( G’""Zsa_gn)’ m#n (14)

The diagonal viscous terms are treated impiicitly in order
to remove the viscous stability limit. It is well known that in
the computation of high Reynelds number flows, very fine
grids need to be used near a solid boundary. Moreover, in
turbulent calculations, the eddy viscosity may be several
orders of magnitude larger than the molecuiar viscosity.
This makes the implicit treatment of the viscous terms

imperative because the viscous stability limit is much more -

restrictive than the inviscid CFL {Courant-Friedrichs-
Lewy) condition near solid boundaries. The off-diagonal

viscous terms usually bave less significant contribution,
unless the grid is severely skewed. They are treated explicitly
here in order to yield a simpler structure of the left-hand-
side (LHS) matrix of the momentum equation. In highly
skewed or highly irregular grids, this explicit treatment of
the off-diagonal viscous terms may reduce the maximum
allowable time step. Nevertheless, highly skewed or
irregular grids should be avoided whenever possible in
order to preserve the accuracy of the numerical method.
Sometimes it is difficult to generate a smooth grid in
complex geometries, especially in three dimensions. This
problem, however, may be overcome by using domain
decomposition and composite grids [11].

Except for the convective terms, all the spatial derivatives
are approximated with second-order central differences. The
convective terms are discretized using a variation of
QUICK {25, 26] which calcuiates the face value from the
nodal values using a quadratic upwind interpolation.
Several researchers have compared the accuracy of QUICK
to that of central differencing, first-order upwind, the hybrid
scheme, and the “skew upwind differencing scheme” of
Raithby [27], and found that QUICK produces superior
results [28-32]. The “power-law” scheme [2] is accurate
under normal conditions but reduces to first-order accuracy
when convection is dominant. Although QUICK does not
rule out the appearance of over- and undershoots, no
numerical oscillations have been observed in any of the
homogeneous flow cases presented here. In the simulation
of the stratified upwelling flow in Section 5, the convective
term in the scalar transport equatian is discretized using
SHARP [33]. The monotonic feature of SHARP is
desirable in this case because a sharp density gradient exists
in the flow domain. Because SHARP is computationally
more expensive than QUICK, it is only used in solving the
scalar transport equation. The upwinding of QUICK is
carried out by computing positive and negative volume
fluxes, (U, +|U,|)2 and (U,,—|U,|)/2, and using the
generic stencil.

3.2. Fractional Step Method

Application of the fractional step method to (10) leads to
the following predictor—corrector solution procedure

1. Predictor:

At
("pr) ()

2';_% [%(C?+Df(u;‘))_%(0?—1 + D ("))
o) (15)
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2. Corrector:

nt+l

Wt —ur =2 RG] (16)

where [ is the identity matrix. The variable u* is called
the “intermediate velocity” which is not constrained by
continuity. The variable ¢ is related to p by

wo=(r-40)(54),

To invert the matrix on the LHS of {15), we employ the
approximate factorization technique [34, 357 in which (15)
is rewritten as

(17)

At
(I_F(Dl”f‘Dz'*'Ds)) (u* —uy)

4t 3
_J‘ [2(C"+DE(u ) — (C;‘“+DE(u;‘_‘))
+D,(u:-')] (18)
where
§ [ . 0 )
D, = agk("c 5 (19)

and k=1, 2, 3. No summation on k is taken in the above
equation. The LHS of (18) is then factorized as

At At At
— ———D ——D ¥l
(I 271 — D )(I 271 2)(! 27 3) (uf—ul)

At 3 n n 1 n—1 A—1
- G Cr Do -5 (€1 40,0 7)

#0,07) | (20)

It is easy to show that the error of the above factorization
is of order G(4¢*). The inversion of the LHS of (20) requires
solving three tridiagonal matrices. The boundary condition
for the intermediate velocity uf derived in [1] is extended
to curvilinear coordinates which requires that

~Lrgnroun). e

i i

3.3. Pressure Poisson Equation

The variable ¢"*' is obtained by solving the pressure
Poisson equation which is derived discretely by the

following procedure. First we derive the equation for the
volume flux U+ ! Tf we imagine that we apply the corrector
step of the fractional step method (16) to the Cartesian
velocity components defined on a certain face of the control
volume, we have

5 ma n+1
(0 Y = 4 = 4 (f;—f;%:)u 22)

The above equation is different from (16) in that, instead of
being written in the strong-conservation-law form, the
pressure gradient is written in the chain-rule-conservation-
law form. Combining (22) with (6), we obtain the equations

for U2*" as
5¢"+1
_. G,
a(o5)

where U} =7 !(8¢,/0x,)u} is called the intermediate
volume flux. Since the intermediate velocity u?* is defined at
the cell center, while the fluxes U* and U”* ! are defined on
the cell faces, u* has to be interpolated onto the cell faces in
order to compute U*. In the present work, we use a third-
order accurate upwind quadratic interpolation similar to
the QUICK formuiation [25] to obtain u}* on the cell faces.

By substituting (23) into (9), we obtain the pressure

urr'=ux (23)

Poisson equation for ¢"*' as
n+1l *
9 mé?_)=_]-% (24)
O 3 At 8¢,

The above derivation results in a pressure Poisson equation
whose coefficients consist only of the mesh skewness tensor
&™. This elliptic equation is solved iteratively using a
multigrid method [26, 36]. The four-color ZEBRA sweep
proposed in [15] combined with the line-by-line
Gauss—Seidel method is used as the smoother. The four-
color ZEBRA sweep makes the pressure solver completely
vectorizable in three dimensions and preserves the con-
vergence property of a line-by-line Gauss—Seidel sweep. The
present multigrid method employs V cycles and performs
two or three smoothing iterations on each level. The fast
convergence rate of the multigrid method makes it possible
to convergence the pressure Poisson equation to machine
zero and, thus, to satisfy mass conservation exactly. The
efficiency of the present multigrid method is demonstrated
in Section 4.

In Cartesian or orthogonal coordinates, no pressure
boundary condition is required if a staggered or the present
non-staggered grid is vsed. In a non-orthogonal coordinate
system, however, a pressure boundary condition is required
in both types of grid layout. This is shown by examining the
derivation of the pressure Poisson equation for a control



NON-STAGGERED UNSTEADY NAVIER-STOKES METHOD 23

volume adjacent to a grid boundary. Figure 3 is a sketch of
the grid near a boundary which is at i = 2. For convenience,
we consider the two-dimensional case in the following
illustration. Writing Eq. {23} in two dimensions for the
volume fluxes defined on the four faces of the cell (2, j) adja-
cent ta a grid boundary and dropping the superscript n + 1,
we have

Usp ;= U;’Z.j—At[G;,}l‘j(¢2.j_¢l.j)

+ iGéfz,j(¢2,j+ ' ¢’1,j+1 - ¢2.j— 1= ¢1,jA 1)]
(25}

Uspp j=Ulp ;,— At[Gé;z,j(ﬂt's,j_ $2.;)

+ %G:lwzz,;(‘ﬁs,ﬁ 1t 2 01— s — 22101
(26)

Vojcip=V%¥c1p— AI[G%— 2 B2,,— 2 5-1)

+ %G;.zjf yk@a ,+ 03 ;1= 01— 61 -1)]
(27)

Vaivin= V;.H 12— At[Gg.z,w 1/2(¢z.j+ 1~ ¢2,j)

+ %Gizj+ yal@s 01t 83— 01— 90, )]
(28)

In the above equations, values of ¢ at the fictitious points
{i=1) outside the boundary appear in the equations for
Uspa,jo Vo j_1s2. and V5 ;... When the pressure Poisson
equation is derived for control volume (2, j), Eqs. (26),
(27}, and (28) are substituted into Eq. (9) for the three inte-
rior fluxes Us, ;, V3 12, and ¥ ;1. For the boundary
flux U,,;, Eq.(25) is not used; instead, the physical
boundary condition for velocity is imposed. It is easy to
show that since the physical boundary condition is imposed
for the volume flux on the boundary when the pressure
Poisson equation is derived, global mass conservation and
the compatibility condition are automatically satisfied
[24].

To obtain the pressure value at the fictitious points, we

Grid boundary

Column of
fictitious points

Q
[o] ¢I‘j+l ¢3J+l

o
@

FIG. 3. Sketch of the grid near a boundary.

employ the momentum equation normal to the boundary.
By applying Eq. (23) on the cell face i = 2 in Fig. 3, we have

5¢n+l

H+1
G”(q};?l—qi""'.l)-{-(?lz 5¢
) 6,4

13
iy A

1
=I (U;Q,j_ U;j;,;)! (29)

n+1

where U7 is the imposed boundary volume flux. The
value of U3, ;is computed from ¥, ; which is extrapolated
from the interior w}* values with a third-order accurate
scheme. The use of extrapolation to compute U/* at the
boundary is consistent with the use of interpolation to
obtain U¥ in the interior cells. Previous authors have used
simple linear extrapolation of the pressure value onto the
boundary [20, 21]. Numerical experiments by the present
authors of lid-driven flows in a square cavity have shown
that simple pressure extrapolation produce erroneous
behavior at the separation and reattachment points.

3.4. Overall Solution Procedure

The overall solution procedure to numerically soive the
governing equations is as follows:

1. Solve for the intermediate velocity u}* at cell centers
using (20);

2. Interpolate u* onto the cell faces and compute the
RHS of (24);

3. Solve (24) by the multigrid method to obtain a

converged ¢"+!;

4. Obtain »7*! from (16) and U+ from (23) to finish
one time step.

Since the viscous stability limit is removed by advancing
the viscous terms implicitly, the stability of the overall
numerical method is restricted by the CFL condition. The
local CFL number is defined as

] lual | lus)
CFL={—+—/—+— | 4¢
(Ax * Ay Az)

At

=(|U1|+|U2|+|U3|)}Z—f,

{30)

where Ax, Ay, Az are the grid spacing of the three Cartesian
coordinates. The stability condition of the present method
requires that

max{CFL} <C~1, (31)
where “max{CFL}” is the maximum value obtained

from (30) in the computational domain. Since the
Adams-Bashforth method is absolutely unstable in the
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linear convective limit, the value of € is a function of
the Reynolds number. Present numerical experiments have
shown that C=1 yields stable solutions. However, as
discussed previously, € may become smaller for highly
skewed grids.

In the present code, only one set of metrics is stored per
control volume. On the cell face which is normal to the
coordinate line £, the vector surface area, J ' 8¢, /dx;
(i=1,2,3), and the three corresponding elements of the
mesh skewness tensor, G™ (r=1, 2, 3} are stored. The cell
volume or the inverse of the Jacobian, J !, is stored at the
cell center. This results in a total storage of 19 metrics per
control volume. No averaging of metrics is required. Quan-
titative comparisons of memory and CPU usage between
the present non-staggered-grid code and two previously
used staggered-grid codes will be given in Section 4.

The computer code is written in three dimensions. Two-
dimensional and axisymmetric problems are solved by using
one control volume and specifying appropriate periodic
boundary conditions in the third dimension.

4. METHOD VALIDATION
4.1. Decaying Vortices

It is important to test the accuracy of a numerical method
and the computer code by computing a flow with an analyti-
cal solution. The errors of the discretization can be explicitly
calculated and the order of accuracy of the overall method
can be clearly shown. The two-dimensional unsteady flow of
decaying vortices has the following exact solution:

u(x, y, t)= —cos(x)sin(y)e ¥ (32)
v(x, p, t)=sin{x)cos(y) e % (33)
plx, ¥, 1) = —31[cos(2x) +cos(2y)] e~ *. (34)
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F1G. 4. Maximum relative error of u as a function of mesh refinement
for the decaying vortices flow. N is the number of grid points in each
dimension.

Computations are carried out in the domain 0 < x, y< .
This flow has been chosen by previous researchers (e.g.,
[1,3]) to test the accuracy of their numerical methods and
boundary conditions.

The maximum relative error in u, ¢,,,, at the dimen-
sionless time of 1.0 was plotted in Fig. 4 as a function of
mesh refinement. Similar results were obtained for ». A
uniform grid was used in the computation. The time step
was refined proportional to the grid spacing. On the bound-
aries, the exact solution was imposed. Figure 4 shows that
the present method and the boundary conditions are indeed
second-order accurate. The accurate prediction of this
unsteady flow demonstrates the time-accurate capability of
the code.

4.2. Lid-Driven Flow in a Square Cavity

Lid-driven flows in a two-dimensional square cavity at
the Reynolds number of 3200 and in three-dimensional
square cavities at Reynolds numbers of 3200, 7500, and
10000 (based on the lid velocity and the length of the
cavity), were simulated. These Reynolds numbers were
chosen because well-documented experimental as well as
numerical data were available. Another reason was that in
the three-dimensional case, the Reynolds numbers were suf-
ficiently high that the flows were fundamentally unsteady,
making time-accurate calculations necessary.

4.2.1. Lid-Driven Flow in a Two-Dimensional Square Cavity

The geometry and the boundary conditions of the lid-
driven square cavity are shown in Fig. 5. Figure 6 gives the
center-line velocities (#(y) and #(x) along the vertical and
the herizontal center-line, respectively) at steady state of the
driven flow in a two-dimensional cavity. A non-uniform
42 x 42 grid is used in the present computation. Previous
results from Ghia er al. [37] (129 x 129 uniform grid) and
from Perng [10] (42 x 42 non-uniform grid) are presented
for comparison. Both 42x42 non-uniform grids yield

Downstream wall

Top lid
Mid-plane

Upstream
Wall .

ry \L — Side-wall

D

. XU
R v

FIG. 5. Geometry and boundary conditions for the lid-driven flow in
a square cavity.
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FIG. 6. Comparison of the center-line velocity profiles u( y) and v(x)
{Re =3200); O, Ghia er al. [37]; <, Perng [10]; —, present.

slightly weaker flow compared with Ghia et al’s fine grid
calculation. The averaged difference between the present
and Perng’s profiles divided by the lid velocity is less than
0.5%. When the steady-state velocity field was compared
with that from the standard staggered-grid computation in
[10], good agreement was obtained in the size of the
primary as well as the corner vortices (see Ref. [24]). The
present solution accurately predicted the location of the
separation and reattachment points. When the boundary
pressure was determined by (29), no unphysical behavior
was observed near the separation and the reattachment
points. On the other hand, schemes which computed the
boundary pressure by using a direct extrapolation (linear or
quadratic) from the interior values resulted in erroneous
behavior. -

4.2.2. Lid-Driven Flow in a Three-Dimensional Cubic Cavity

Lid-driven flows in a three-dimensional cubic cavity at
high Reynolds numbers have been investigated both
experimentally and numerically [38-40]. The highly
unsteady flows exhibit complex flow structures such as the
Taylor—Goertler-like (TGL) vortices first observed by
Koseff ef al. [39]. This flow serves as an excellent test case
for time-accurate numerical methods. We computed the
starting flow in a half cubic cavity (from the endwall to the
midplane) at a Reynolds number of 3200. Numerical
experiments by Perng [10] have shown that at this
Reynolds number the flow is essentially symmetric over the
midplane of the cavity. We compared our solutions with the
results in [38] for flowfields at 10, 30, 60, and 90 s after
start-up. Good agreement was found (not shown here to
save space). In Fig. 7, the computed center-line velocity
profiles at the midplane of the cavity are compared with the
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FIG. 7. Time-averaged center-line velocity profiles u(y) and o(x) on
the mid-plane of the cubic cavity at the fully-developed state (Re = 3200):
O, Prasad et al. [38]; —, present.

experimentai results [38]. The measured data are 5-min
averages at the fully developed state, while the computed
data are 3-min averages from 10 to 13 min after start-up.
The computational grid has 34 x 34 x 18 grid points, being
non-uniform in the x — y plane and uniform in the z direc-
tion. The averaged difference between the two sets of data
divided by the lid velocity is less than 0.5%. In Fig. 8,
instantaneous streamlings in a y — z plane at 0.258 from the
downstream wall show the existence of two pairs of TGL
vortices in the whole cavity. In this case, 34 uniformly dis-

y/D

FIG. 8. Instantaneous streamlines in the y —z plane (0,258 from the
downstream wall of the cubic cavity flow, ¢ = 540 s (Re = 3200).
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tributed grid points are used in the z direction to obtain a
better resotution of TGL vortices. Only the flow in the left
half of the cubic cavity is simulated and the data is flipped
onto the right half. Prasad er al. [38] also observed two
pairs of TGL vortices in the cubic cavity near the
downstream wall at this Reynolds number. The presently
computed spanwise wavelength of the TGL vortices is 0.378
which agrees precisely with the value measured by Prasad
[40], which is also 0.37B. These vortices are meandering in
the spanwise direction and are highly unsteady. They are
responsible for a large portion of momentum transfer in the
cavity.

Lid-driven flows in a three-dimensional cavity at
Reynolds numbers of 7500 and 10000 were also computed
using the present numerical method. These flows are in the
transitional and locally turbulent regimes. Large eddy
simulations were performed with smail-scale motions being
modeled by either the “dynamic eddy viscosity model”
[41, 427 or the “dynamic mixed model” [43]. Both the
mean and the fluctuating quantities were computed and
compared with the measurements of Prasad and Koseff
[44]. Excellent agreement was achieved. For details of the
simulation results and the coupling of the numerical method
with the subgrid-scale turbulence models; the readers are
referred to [43].

4.2.3. Efficiency of the Method

The performance of the present numerical method in
terms of efficiency is now evaluated using the three-dimen-
sional lid-driven cavity flow at the Reynolds number of 3200
which has been described in Section 4.2.2. The iterative
solution of the pressure Poisson equation is the most time-
consuming part in the overall solution procedure. For high
Reynolds number flows and highly stretched or skewed
grids, it is very difficult to converge the pressure Poisson
equation to machine accuracy. Therefore, the use of a
rapidly convergent scheme such as the multigrid method is
a very desirable feature. Figure 9 shows the residual of the
pressure Poisson equation (g,) as a function of the working
unit (wu) at the first time step of the aforementioned cubic
cavity run on the 34x 34 x 18 grid. One working unit is
defined as the work equivalent to one iteration on the finest
grid. As a base case we use a point SOR method with an
optimized over-relaxation parameter of 1.5. In the multigrid
method, four grid levels are employed. As expected, the
point SOR method converges very slowly. On the other
hand, the multigrid method shows a wvery favorable
exponential convergence rate that drops the residual to
machine zero in less than 40 working units (16 V-cycles in
this case). We note that this convergence rate is achieved on
a Cartesian but highly non-uniform grid. Similar behavior
has been experienced with curvilinear grids. For mildly
skewed grids, the convergence of the multigrid method in
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FIG. 9. Residual of the pressure equation for cubic cavity flow at the
first time step: O, point SOR; <, multigrid.

solving the pressure Poisson equation remains exponential,
although it may become slower as the grid quality continues
to deteriorate. Nevertheless, the more irregular a grid is, the
more essential it is to use a rapidly converging method such
as multigrid.

The CPU and memory usage of the present semi-implicit,
non-staggered-grid, non-orthogonal curvilinear code is
compared with two staggered-grid codes, one exptlicit and
one fully implicit. These codes employ solution methods
similar to those discussed by Perng [10] and were written
and tested by the present authors (e.g., see [117]). In the
staggered-grid methods, all three Cartesian velocity com-
ponents are defined on each face of the control volume. The
grid layout and variable definition follow that developed by
Maliska and Raithby [9]. The explicit staggered-grid code
(EXPS) utilizes the second-order Runge-Kutta time-
marching method. The fully implicit staggered-grid code
(IMPS) employs the trapezoidal scheme and requires global
iteration at every time step. Spatial discretization schemes
are similar to those used in the present method. The
pressure Poisson equations are solved using the same
multigrid method in all three codes.

The CPU time (in us) per cell per time step and the num-
ber of variables defined per cell are given in Table I for the
three methods. The CPU time was obtained on a Cray
Y-MP 8/864 supercomputer. All three codes have been vec-
torized. Two multigrid V-cycles were performed in solving
the pressure Poisson equation at every time step. For IMPS,
two global iterations were performed at every time step. We
can see that the present semi-implicit code is two times
faster than the explicit staggered-grid code and almost
four times faster than the implicit staggered-grid code.
Moreover, the removal of the viscous stability limit in the
semi-implicit method allows for a much larger time step
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TABLE I

Comparisons of CPU Time (us per Cell, per Time Step) and
Memory Storage (Number of Variables per Cell) between the
Present Method and Previous Staggered Grid Methods

CPU (us) Number of
per cell per time step variables per cell
EXPS 60 103
IMPS 110 94
Present 28 51

compared to the explicit code in cases where a very fine grid
needs to be used near solid boundaries. Although the time
step of the implicit code can be even larger when the goal is
to obtain a steady-state result, the step is generally limited
by the CFL number in a time-accurate simulation. One
reason is the need to control temporal errors. Another
reason is that the trapezoidal time-marching scheme
produces spurious oscillations if the time step is much larger
than the limit set by the CFL condition. The number of
iterations that need to be performed every time step in the
fully implicit method also increases with time step, making
the method less efficient.

As Table I shows, the total number of variables that the
present non-staggered-grid method needs to define per con-
trol volume is only about half of the two staggered-grid
methods. This is attributed to the drastic reduction in the
number of metric terms as well as physical variables used in
the non-staggered-grid formulation. It is noted that the
number of variables in the above two staggered-grid codes
EXPS and IMPS has been controlled by careful arrange-
ment. If seven sets of metrics are used as in some previous
staggered-grid codes [10, 12], the number of metrics only
will be 112 and the number of total variables per control
volume will be about 150. The present code executes at a
typical speed of 100 MFLOPS on a single processor of a
Cray Y-MP 8/864 supercomputer.

4.3. Laminar Flow over a Backward-Facing Step

The taminar flow over a backward-facing step has long
been used as a benchmark to examine the accuracy of
numerical methods. The flow geometry and the boundary
conditions are shown in Fig. 10. The expansion ratio is 1:2.
A fully developed parabolic profile is imposed at the inlet,
while gradient-free condition is used at the outflow
boundary. The length of the computational domain is 30
step heights. A 130 x 66, streamwise-uniform and vertically
nonuniform grid is used in the present computation. In
Fig. 11, the computed normalized reattachment length as a
function of the Reynolds number is compared with previous
experimental and numerical results. The Reynolds number
is based on the mean entrance velocity and the step height.
Excellent agreement is achieved between the present data
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FIG. 10. Geometry and boundary conditions of the flow over a
backward-facing step.

and the computation of Kim and Moin [1] in the Reynolds
number range from 200 to §00. The discrepancy between the
present result and the experimental data of Armaly et al.
[45] at Reynolds numbers higher than 400 may be due to
possible three-dimensional effects in the experiments.
Perng’s computation [ 107] was performed with an entrance
channel ahead of the expansion. His data predicts smatler
reattachment lengths at Reynolds numbers higher than
about 300. The discrepancy between the present result and
Perng’s can be attributed to the upstream influence on the
inlet profile. Perng [10] has shown that with an entrance
section, the velocity profile right at the expansion deviates
from a parabola and appears to have a “down-wash.”
Nevertheless, the excellent agreement with Kim and
Moin’s data which was generated with the same boundary
condition as used in the present simulations demonstrates
the accuracy of the present method.

At higher Reynolds numbers, a separation bubbie
appears at the top wall of the channel. In Table II, the nor-
malized length of the top separation bubble is compared
with the data from [ 1 ]. Again, excellent agreement is found.
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FIG. 11. Reattachment length as a function of the Reynolds number of

the flow over a backward-facing step: <, Armaly et al. [45]; —, Kim and
Moin [1]; A: Perng [10]; O, present.
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TABLE I

The Length of the Separation Bubble at the Top Wall of Back-
ward-Facing Step Flows Scaled by the Step Height, x,/h, vs the
Reynolds Number

Re =400 Re =600 Re = 800
Kim & Moin [1] — 7.8 11.5
Present 2.5 7.8 11.4

4.4. Lid-Driven Flow in a Polar Cavity

The lid-driven flow in a two-dimensional polar cavity is a
standard test case for computer codes written in curvilinear
coordinates. The geometry and the boundary conditions of
the polar cavity together with a 42 x 42 non-uniform grid
are given in Fig. 12. The Reynolds number (based on the lid
velocity and the radius of the inner circle) is 350. Figure 13
shows the steady state azimuthal and radial velocity profiles
along the line # = 0. The experimental and numerical results
of Fuchs and Tillmark [46]} together with the numerical
result of Perng [10] are included for comparison. The pre-
sent result on a uniform 42 x 42 grid gives a slightly stronger
azimuthal flow near the driven tid and a weaker one far from
it. There is no discernible difference between the profiles
from the present solution on a non-uniform 42 x 42 grid and
those of Perng’s data which were obtained also on a 42 x 42
non-uniform grid. The present calculation also compares
well with Fuchs and Tillmark’s numerical results. The dis-
crepancy between the numerical and the experimental data
may be attributed to the three-dimensional effects in the
experiments in which three-dimensional flow structures

FIG. 12. Geometry and boundary conditions of the lid-driven flow in
a polar cavity.
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FIG. 14. Comparison of the streamlines between (a) present and
{b) Perng [10] (Re =350).
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were observed {46]. Three-dimensional simulations of the
original flow in reference [46] are difficult because of
the large aspect ratio (about 10:1) of the experimental
apparatus employed, and, thus, were not attempted. In
Fig. 14, the flowfield at steady state from the present non-
uniform grid solution is compared with the result in [ 10].
Again good agreement is achicved in the size of the vortices
and the location of the separation and reattachment points.

4.5, Three-Dimensional Flow in a 90° Bending Square Duct

Several researchers (e.g., [3, 15]) used the three-dimen-
sional flow in a 90° bending square duct as a benchmark to
test three-dimensional flow codes written in curvilinear
coordinates. The flow structure is compiex and truly three-
dimensional. The geometry and the coordinate system are
shown in Fig. 15. The inlet and the outiet are both five units
long. The radius of the bending circle is 1.8 units. Both sides
of the square cross section are one unit wide. Due to the
symmetry in the z direction, we only compute the flow in a
half duct (D <z <0.5). The fully developed velocity profile
in a straight square duct [47] s imposed at the inlet
boundary. The gradient-free condition is employed at the
outflow boundary. We expect that the upstream influence to
the inlet profile is very small in this case due to the long inlet
section. The Reynolds number based on the mean entrance
velocity and the duct width is 790, Two runs were carried
out. One used a non-uniform 34 x 18 x 10 grid and the other
used a non-uniform 66x 34 x 18 grid. Grid points are
uniformly distributed in the streamwise direction and
clustered near the solid walls. In Fig. 16, the steady-state
streamwise velocities at six streamwise stations and two
spanwise z locations are plotted. Good agreement is
achieved between the present results and the experimental
measurements of Humphrey er af. [437] and the numerical
solutions of Rosenfeld ez al. [15]. The nomerical method
employed by Rosenfeld e al. is also based on a fractional
step method with the volume flux being used as the primary

Symmetry plane

FIG. 15. Geometry of the 90° bending duct.
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dependent variable. Their solution given in Fig. 16 is
obtained on a 60 x 40 x 20 nonuniform grid. The present

‘solutions slightly overpredict the streamwise velocity at the

first three stations downstream of the inlet. However, they
accurately capture the peaks near the outside wall at the last
two downstream stations. The fine grid solution exhibits
better agreement with the reference experimental and
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numerical data. To investigate the effect of the outflow loca-
tion, a run was performed in which the length of the outlet
after the bend was doubled and a 98 x 34 x 18 grid was used.
No discernible difference was found between the two
present fine grid solutions. The discrepancy between the
experimental and both of the numerical results requires
further investigation. Nevertheless, the resuits validate the
present method's capability to accurately simulate complex
three-dimensional flows.

In Fig. 17, the cross-sectional velocity vector field at
#=90° is plotted and compared with the resuit from [15].
Good qualitative agreement is found. We can se¢ that the
flow exhibits complex vortical structures when passing
through the bend.

5. UNSTEADY AND COMPLEX-FLOW CAPABILITY

One of the major purposes of the present work is to
develop an overall efficient and accurate numerical method
for both physically and geometrically complex flows. We
demonstrate this capability by presenting the large eddy
simulation results of a turbuient stratified and rotating flow
in an irregular domain which is a laboratory model of the
coastal upwelling phenomenon. To the author’s knowledge,
this is the first attempt of performing a large eddy simula-
tion of this flow.

5.1. Upwelling Flow Description

The geometry of the flow domain is a 90°-section of an
annulus with a sloping bottom. A schematic of the domain
and the upwelled density interface are shown in Fig. 18.
Initially, the stratified fluid is in solid body rotation with the
container. The initial density field which is horizontally
uniform and vertically separated by a narrow interface
approximates a “two-layer” stratified system with a lighter
fluid on top of a heavier fluid. At time 7 =0, upwelling flow
is generated by relative rotation of the top lid, which

Surface front

Density interface

FIG. 18. Schematic of the flow domain and the density interface of the
upwelling flow,

TABLE 111

The Geometric and Physical Parameters of the
Upwelling Flow Simulation

fo (rad) H(m) h(m) Qfs™') AQ(s™) hkylcm) Spjp

/2 015 0033 227 —0.185 2.60 0.013

simulates a wind stress (Fig. [8). This simulation was
chosen because measurement data of upwelling flows in a
rotating cylinder was available for comparison [49]. The
geometric parameters which are given in Table IIT are
similar to those in [49] except that, instead of a cylinder, a
section of an annulus is used. The outer radius of the
annulus R, is 0.45 m and the inner radius R, is 0.1 R,. The
effect of the presence of the inner wall on the upwelling flow
has been shown to be insignificant [24].

The governing equations are the grid-filtered continuity,
Navier—Stokes, and the scalar transport equations with the
Boussinesq approximation which are solved in the reference
frame rotating with the container. The large scale structures
are resolved by the simulation while the small scale motion
is represented by the dynamic eddy viscosity subgrid-scale
model [41]. For details of the governing equations and the
subgrid-scale model, the reader is referred to [24].

A no-slip condition for the velocity is applied to the top,
bottom, inner, and outer walls. A no-flux condition is used
for the density at the solid walls. At the two azimuthal
boundaries, periodic boundary conditions are applied. A
66 x 66 x 66 grid is employed which is non-uniform in the
radial and vertical direction but uniform in the azimuthal
direction. Grid points are clustered in the vicinity of solid
walls, Geometric stretching is employed in the directions
where grid distribution is non-uniform. The spatial and
temporal resolutions are shown in Table IV.

The fluid is salt stratified with a Prandtl number of 723.
The physical parameters are given in Table II1. The physical
conditions used in the simulation are the same as in Case (a)
of [49] except that the fluid viscosity is 12.5 times larger
than that in the experiment. This larger viscosity is
necessary because the simulation of the original experiment
has been shown to be computationally infeasible [24].
Since the upwelling phenomenon under investigation is

TABLE IV

The Spatial and Temporal Resolution of the
Upwelling Flow Simulation

Grid resolution ‘ Time step
Ar; 4z,
N X Ngx N, n —== At (s)
(Mo Nox N2) R~ Ry) H
66 x 66 x 66 Ix10-? Ix 07 2x 1072
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essentially inviscid, the increase of the fluid viscosity does
not have a significant effect. This is confirmed by the agree-
ment between the computed and the measured data (sec the
following section and [24]).

5.2, Simulation Results

As the lid rotates clockwise relative to the system rota-
tion, fluid near the top which moves with the lid is driven
radially inward by the Coriolis force and forms the top
Ekman layer. Constrained by mass conservation, fluid at
the bottom moves upward which lifts up the density inter-
face. If the relative rotation of the top lid is strong enough,
the body of the interface will intersect the surface and form
a surface front. During this process, unstable stratification
occurs as the heavy fluid reaches the top surface and inten-
sive turbulent mixing exists in the vicinity of the front.

The surface front which initially is axisymmetric under-
goes baroclinic instability. Azimuthal waves appear at the
front and grow to large amplitude. Figure 19a shows the
density field at #/¢, = 0.9, where ¢, is the spin-up time scale
which is defined as t, = (/#,0/4Q2)((2 + 42)/v)"7* and h, is

FIG. 19. Density field of the upwelling flow: (a}
(b} t/t, =20

tfr,=09;

581/114/1-3

(b)

FIG. 20. Comparison of the structures of the frontal waves ina
reference frame traveling with the waves; (a) simulated velocity field;
(b} flow visualization [49].

the initial depth of the top layer. The front appears to be
almost axisymmetric although small amplitude azimuthal
waves are evident. Figure 19b shows the density field at
t/t,= 2.0. The initially axisymmetric front has evolved into
an irregular pattern with large-scale frontal waves and
eddies. The front is wider due to mixing on both sides.
Figure 20 compares the simulated and the observed struc-
tures of the frontal baroclinic eddies in a horizontal plane.
We see that the simulated structures are very similar to
those observed in the flow visualizations.

The frontal azimuthal waves become saturated after a
certain time and the growth stops. The size of the saturated
waves is measured by the dimensionless wavelength L.=
L,./2nR, where R= (R, R)"* R, [ =(g'h)'?/fi=1,2)]is
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the Rossby deformation radius of the ith iayer with the
initial depth of #,, g’ = g dp/p is the reduced gravity, and
f =20 is the Coriolis parameter. The computed Z,, is 1.00
while the measured value is 0.98 [49]. More quantitative
comparisons can be found in [24].

6. SUMMARY

A numerical method to solve the time-dependent, three-
dimensional incompressible Navier-Stokes equations in
curvilingar coordinates is presented. A non-staggered grid is
empioyed with the pressure and the Cartesian velocity com-
ponents being defined at cell centers and the volume fluxes
being defined on their corresponding faces. Only one set of
metric quantities needs to be stored per control volume and
no averaging of metrics is required.

The non-staggered grid is naturally combined with the
fractional step method. The momentum equations are
advanced semi-implicitly using the approximate factoriza-
tion technique. A third-order accurate upwind quadratic
scheme is used to interpolate the intermediate velocity onto
the cell faces. The pressure Poisson equation is formulated
in the same way as in a staggered-grid method and is solved
iteratively by a multigrid method. Mass conservation can be
satisfied to machine accuracy. The boundary condition for
pressure is obtained from the momentum equations. The
method is second-order accurate in both space and time,
which is verified by comparing the numerical solufion with
an analytical solution,

Solutions of benchmark cases were compared with
existing analytical, numerical, and experimental data. Good
agreement was found in all cases. The CPU time and
memory storage were significantly reduced compared with
previous staggered-grid codes. Results of the large eddy
simulation of a turbulent, stratified, and rotating upwelling
flow in an irregular container demonstrated the unsteady
and complex-flow capability of the present method.
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